
 

Beyond the feedforward sweep: feedback 
computations in the visual cortex 
Gabriel Kreiman​1 ​& Thomas Serre​2  
1 ​Children’s Hospital, Harvard Medical School and Center for Brains, Minds, and Machines 
2 ​Cognitive Linguistic & Psychological Sciences, Carney Institute for Brain Science, Brown University 

Corresponding author:​ Thomas Serre <thomas_serre@brown.edu> and Gabriel Kreiman 
<gabriel.kreiman@childrens.harvard.edu> 

 

Keywords:​ deep learning, neural networks, machine vision, visual reasoning, image 
categorization, incremental grouping, segmentation 

 

Abstract: ​Visual perception involves the rapid formation of a coarse image representation at the 
onset of visual processing, which is iteratively refined by late computational processes. These 
early versus late time windows approximately map onto feedforward and feedback processes, 
respectively. State-of-the-art convolutional neural networks, the main engine behind recent 
machine vision successes, are feedforward architectures. Their successes and limitations 
provide critical information regarding which visual tasks can be solved by purely feedforward 
processes and which require feedback mechanisms. We provide an overview of recent work in 
cognitive neuroscience and machine vision which highlights the possible role of feedback 
processes for both visual recognition and beyond. We conclude by discussing important open 
questions for future research. 
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Introduction 
The anatomy of the primate visual system suggests an intricate network of over 30 or so 

interconnected visual areas, each one encompassing millions of neurons within highly 
specialized circuitry ​[1]​. The neural dynamics resulting from such a network should theoretically 
be quite complex ​[2]​. However, anatomical evidence suggests a clear hierarchical organization 
between visual areas – resulting in a feedforward vs. feedback separation in terms of the 
connectivity patterns ​[1,3]​. Such patterns of connectivity, in turn, constrain visual processing 
dynamics to be roughly composed of an early “bottom-up phase” primarily carried by 
feedforward processes during the first 150 milliseconds after visual onset followed by a late 
“reentrant” phase carried by feedback processes ​[4]​.  

A growing body of literature suggests that bottom-up processing enables the visual 
system to build an initial, coarse, visual representation before more complex visual routines are 
implemented. This base representation can be computed through an initial feedforward sweep 
of activity through the visual system and is sufficient for rapid categorization tasks ​[9,28]​. Visual 
processing can be interrupted after the initial bottom-up phase and, while this interruption may 
prevent the visual input to reach consciousness ​[4]​, the initial computations nonetheless allow 
the completion of certain visual tasks such as speeded visual recognition ​[11–13]​.  At the 
neurophysiology level, it has been shown that the early response of neurons in intermediate and 
higher visual areas contains enough information for decoding image category almost readily 
from the onset of the visual response both during passive ​[29,30]​ and active ​[12]​ presentations. 
Human observers make recognition mistakes under these conditions, but these errors do not 
appear to be randomly distributed across images as would be expected from motor errors or 
guessing. Instead, there appears to be a systematic pattern of behavioral decisions – with some 
images being consistently classified correctly or incorrectly across human observers ​[5,14]​. This 
pattern of correct and incorrect answers suggests an underlying visual strategy implemented in 
the bottom-up phase which appears to be largely shared between human and non-human 
primates ​[9,15,16]​.  

Computational models constrained by the anatomy and physiology of the visual cortex 
(see ​[17–19]​ for reviews) account relatively well for this pattern of behavioral responses ​[5]​. 
These network models process information sequentially – through a bottom-up cascade of 
filtering, rectification and normalization operations – providing computational evidence for the 
feedforward hypothesis ​[19]​. Interestingly, further developments of these early computational 
models have led to modern deep convolutional neural networks (DCNNs), which have powered 
recent breakthroughs in computer vision ​[20]​ as well as many other domains. Although these 
network models are not constrained by experimental data, they have nonetheless been shown 
to provide an even better fit than earlier models to both behavioral ​[16,21,22]​ and 
electrophysiological ​[23,24]​ data (but see ​[25]​). These network architectures now achieve 
accuracy well beyond those of earlier computational models of the visual cortex and are on par 
with or better than human accuracy during unspeeded image categorization tasks for both 
object ​[26]​ and face ​[27]​ recognition.  
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Despite these successes, it is also becoming increasingly clear that current DCNNs 
remain outmatched by the power and versatility of the primate brain (see ​[28]​ for a recent 
review). The gap between human and machine vision is particularly obvious when scrutinizing 
the results of current automatic image captioning systems (​Fig. 1​). Although such algorithms are 
reasonably good at recognizing the presence of certain objects in the scene, they often fail 
miserably at flexibly interpreting the fundamental gist of complex visual scenes, human actions, 
social interactions, and events depicted in images. To date, no known artificial system is 
capable of passing a visual Turing test as defined in ​[29]​. 

We attribute these limitations to the fact that current systems only perform classification 
– in a processing mode akin to pre-attentive bottom-up processing. In image categorization or 
face identification, for instance, a category label gets associated with an image. In object 
detection and localization as well as in instance segmentation, image regions containing an 
object of interest get associated with a bounding box or a segmentation mask and a category 
label. In dense labeling tasks such as semantic image segmentation tasks, every pixel gets 
assigned a category label. There is obviously much more to scene understanding and visual 
cognition than mere classification. Many visual analysis problems require a level of abstraction 
which transcends object recognition or naming (i.e., image classification). For instance, humans 
can easily answer questions about spatial relations (e.g., whether something is above, to the 
right, etc, of another thing) or shape relations (e.g., whether two or more shapes are the same 
or different up to a transformation including rotation, etc), even for unfamiliar shapes ​[30]​.  

Think about many of the visual reasoning tasks that one must solve daily to plan actions, 
or to manipulate objects, such as when finding out which of two keys will fit into a particular lock 
or which piece of a puzzle is the missing piece. According to Ullman (1996), visual cognitive 
tasks can be decomposed into a sequence of simpler elementary operations including e.g., 
visual search, texture segregation and contour grouping ​[31]​. These elementary operations, or 
visual routines, can be dynamically and flexibly assembled to solve a myriad of complex, 
abstract and open-ended visual reasoning tasks. Assigning a category label to a particular 
image region is but one of the many visual routines needed for scene understanding. 

The limitations of current computational models underlie critical aspects of visual 
cognition that are not accounted for by purely feedforward networks. Bottom-up processing may 
not be sufficient for more general visual reasoning tasks, which may necessitate bringing in 
feedback signals. Indeed, neuroscience evidence suggests that feedback modulation of neural 
responses takes place after some delay (see ​[31]​ for review). The challenge is to identify which 
neural computations are critical to visual understanding beyond rapid visual categorization, in 
contrast to aspects of biological computations that represent implementation details but are not 
critical to account for cognitive functions. The goal of this review is to bring together recent 
exciting and complementary developments in computational cognitive neuroscience, with 
behavioral and neurophysiological results as the first step towards a unifying theory for how our 
visual system integrates bottom-up sensory inputs with top-down mnemonic and cognitive 
processes.  

3 

https://paperpile.com/c/KYjl2n/dh5b
https://paperpile.com/c/KYjl2n/1EA6
https://paperpile.com/c/KYjl2n/kKlS
https://paperpile.com/c/KYjl2n/hFs8
https://paperpile.com/c/KYjl2n/b2iq


 

 

The role of recurrence in visual recognition 
Computational flexibility 

Some of the most successful vision systems in many pattern recognition tasks consist of 
purely feedforward architectures where information flows in a single bottom-up sweep from 
pixels to category decisions. In stark contrast, biological architectures are characterized by 
pervasive feedback (also called recurrent) connectivity (​Fig. 2A​). A recurrent neural network 
(RNN) can be “unfolded” to create an equivalent purely feedforward network that performs the 
same computation by adding extra layers for each recurrent step (​Fig. 2B​). If we constrain the 
number of weight parameters of the unfolded network to be the same as the folded version, i.e., 
we impose weight sharing, the two networks will carry the same computations. In other words, 
the same computations can be carried by a single-layer recurrent network requiring ​N​ recurrent 
computational steps and an (N+1)-layer feedforward network with identical weights across 
layers.  

Interestingly, several successful approaches to vision involve such feedforward 
architectures where the same weights are re-used recursively several times to increase the 
depth of visual processing. Indeed, the first texture discrimination algorithms were recursive ​[32] 
and related ideas have also been applied to the recognition of dynamic texture ​[33]​. Similarly, a 
hierarchical extension of the classic wavelet transform where the transform is applied 
recursively (also known as the scattering transform) has been shown to yield significant 
improvements in texture categorization ​[34]​. Such recursive architectures can be implemented 
by RNNs within a single fully-recurrent layer of processing. More recently, it has been shown 
that forcing recursivity into state-of-the-art DCNNs led to networks which perform better on 
image categorization tasks with fewer parameters ​[35,36]​.  

Given that it is possible to unfold recurrent connections to create a deeper network with 
identical computational prowess, why bother with recurrent connections? Recurrent networks 
offer several advantages for biological organisms over purely feedforward architectures. First, 
recurrent networks are ​computationally more efficient​. The network in ​Fig. 2A​ requires fewer 
units, synapses, and overall shorter wiring length than the one in ​Fig. 2B​. Limiting the number 
of cells and synapses and the overall wire length is particularly critical for biological systems, 
which have size and weight constraints; the brain is also the most expensive organ from an 
energetic standpoint and it must operate under a constrained energetic budget.  

In the engineering literature, there is also a growing realization that energy efficiency 
may be an appealing reason to prefer smaller networks. A recent study estimated that training a 
state-of-the-art deep neural network for natural language processing costs millions of dollars in 
cloud computing service – with a carbon footprint equal to about 5 times the emissions of a 
single car during its entire lifetime (or about 300 NY-SF flights) ​[37]​ (see also ​[38]​).  
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Even ignoring energy and size constraints, a critical advantage of recurrent networks is 
that they are ​computationally more flexible​. The depth of processing required to solve different 
types of tasks may not be known ahead of time. While most computer vision tasks require 
training a network to solve a specific task (e.g., categorize images in ImageNet ​[39]​), the brain 
needs to solve a possibly endless and constantly changing set of tasks. Unfolding a 
highly-recurrent network to create a deeper feedforward network makes a commitment to a 
specific architecture and a given number of computational steps. Imagine that after you tried 
different architectures to label certain images, the dataset changes, but now you are stuck with 
the architectural choices. By and large, the adult brain’s architecture is fixed: it is possible to add 
a few neurons (neurogenesis), some neurons die, and synapses come and go but the overall 
number of layers and number of units per layer is to a first approximation essentially fixed. 
Recurrent connections offer the flexibility to potentially vary the depth of processing across 
tasks, without the need to change the architecture for each task.   1

This computational flexibility to perform multiple and arbitrary recognition tasks carries 
additional benefits. Some tasks may be easier (i.e., require less processing depth) and can be 
solved in a faster fashion – possibly through a single feedforward sweep of activity – while other 
tasks may benefit from those additional computational steps afforded by recurrent connections. 
An image could rapidly traverse through the architecture in ​Fig. 2C​ to reach a decision stage. 
This decision stage (perhaps located in the prefrontal cortex), can evaluate whether it has 
enough information to produce a response. If it does, then the problem is solved with just a 
rapid feedforward sweep. If it does not, then the decision stage may provide additional fast 
feedback signals through top-down connections to lower areas or wait for slower intra-areal 
horizontal feedback signals to provide additional elaboration and finally produce a response. 
This flexibility to use more or less computations, in real-time and on-demand, could at least 
partly account for the well known speed-accuracy trade-offs in psychophysics experiments and 
also for the fact that certain easy problems might be solved in a rapid or speeded operation 
mode (​Fig. 2C​) whereas other tasks may be solved in a slower mode (​Fig. 2D​) ​[41]​.  Indeed, a 
related idea referred to as adaptive computing is gaining traction in computer vision and natural 
language processing and is being actively explored both with feedforward ​[42]​ and recurrent 
networks ​[43,44]​.  

An experimental technique that has been used to impose rapid processing is ​backward 
masking​. Shortly after flashing a stimulus, a noise mask is presented. The interval between the 
onset of the stimulus and the mask, generally referred to as stimulus onset asynchrony typically 
encompasses between ~50 and ~100 ms. Under these conditions, the mask purportedly 
interferes with and interrupts the interactions between recurrent signals and the incoming inputs, 
thereby emphasizing bottom-up processing of the stimulus ​[5,45–47]​ (but see ​[48]​ for a 
counter-argument). It has been shown that, electrophysiologically, the initial sweep of rapid 
visually selective signals along the ventral visual cortex is unaffected by backward masking ​[9]​. 

1 ​A related way to achieve flexibility is through bypass routes ​[40]​, which allow the architecture 
to skip some of the processing stages ​[19]​, and which may help alleviate the issue of a fixed 
architecture to some extent (at the expense of adding and training yet more connections). 

5 

https://paperpile.com/c/KYjl2n/OSUd
https://paperpile.com/c/KYjl2n/5Mft
https://paperpile.com/c/KYjl2n/d59p
https://paperpile.com/c/KYjl2n/g5KZ+GclN
https://paperpile.com/c/KYjl2n/QO7p+70A9+AO81+oRTS
https://paperpile.com/c/KYjl2n/UHyj
https://paperpile.com/c/KYjl2n/dFLB
https://paperpile.com/c/KYjl2n/1sdY
https://paperpile.com/c/KYjl2n/I7hC


 

Consistent with the idea that backward masking interrupts recurrent processing, recent work has 
shown that the introduction of a rapid mask interferes with the ability to perform visual 
recognition tasks that require more processing time such as pattern completion ​[41]​, as 
elaborated upon under the section entitled “Generalization beyond interpolation”.  

Consistent with this idea, Eberhardt ​et al​ trained classifiers on the outputs of individual 
layers derived from several representative DCNNs for the categorization of animal vs. 
non-animal images and found that the accuracy of the classifiers increased as a function of the 
layers’ depth ​[21]​. Interestingly, they found that the correlation between model predictions 
derived from individual layers versus human participants engaged in the same speeded 
categorization task peaked at intermediate layers. Because the accuracy of human observers 
increases monotonically as a function of the response time available to respond, these results 
suggest that human observers may adjust the depth of visual processing – not through static 
depth as done in current DCNN architectures – but through time via recurrent processes.  

The separation of time scales into a rapid initial feedforward sweep followed by a late 
recurrent processing mode is of course only an approximation. There is no clear-cut separation 
between these two modes of operation and cortical computations are continuous, with varying 
degrees of preponderance between feedforward and recurrent computations ​[49]​. Yet, this 
approximate separation of temporal scales has been useful to conceptualize and understand 
the sequence of computations that ultimately lead to visual cognition. 

Long-range spatial dependencies and perceptual grouping 
To demonstrate the limitations of current feedforward networks for learning long-range 

spatial dependencies, Linsley et al ​[50]​ described a simple visual recognition challenge inspired 
by cognitive psychology tasks (see ​[10]​ for review) called the “Pathfinder” which involves 
judging whether there exists a path linking two markers in an image (​Fig. 3c​). To control for 
intra-class variability and task difficulty, they systematically varied the length of individual 
contours in the stimulus set. Increasingly deeper networks were needed to solve this task as the 
path length increased, which likely reflects the need for receptive fields at the top to contain the 
entire paths and hence the need for increasingly deep architectures. In contrast, it was found 
that imbuing neurons with the ability to incorporate context through horizontal connections led to 
a single-layer highly recurrent neural network that was able to outperform all tested feedforward 
hierarchical baselines, despite the fact that these feedforward networks contained orders of 
magnitude more parameters. This observation provides compelling evidence that some visual 
tasks such as contours tracing tasks are much better suited for recurrent neural circuits.  

In follow-up work, Kim et al ​[51]​ extended the Pathfinder challenge, which stresses 
low-level gestalt cues, to a task which they called “cluttered ABC” (cABC) which emphasizes 
high-level object cues for perceptual grouping.  As in the Pathfinder task, in the cABC task, 
markers are placed either on two different shapes or the same shape. Here, the shapes consist 
of highly overlapping capitalized English-alphabet letters and the task consists in judging 
whether the two markers fall on the same or different letters (​Fig 3d​). As for the Pathfinder,  the 
authors found that increasing the intraclass variability in cABC strained learning for networks 
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that rely solely on bottom-up processing. Horizontal connections resolved this limitation on tasks 
such as Pathfinder featuring gestalt cues by relying on incremental spatial propagation of 
activities. Top-down connections rescued learning on tasks such as cABC featuring object cues 
by propagating coarse predictions about the expected position of the target object. These 
findings thus disassociate the computational roles of bottom-up, horizontal and top-down 
connectivity, and demonstrate how a recurrent network model featuring all these interactions 
can more flexibly form perceptual groups. 

Beyond perceptual grouping, several other computer vision tasks have been shown to 
benefit from a similar inclusion of recurrent processing including image generation ​[52]​, object 
recognition ​[35,53–55]​ and super-resolution tasks [60]. 

 

Generalization in visual recognition 
To a first approximation, the number of free parameters of a learning algorithm, including 

neural networks, constrains the sample complexity of the network  ​[56]​, that is, the number of 
training samples needed to have some reasonable guarantee that the algorithm will be able to 
generalize to novel examples that were not encountered before. A network with fewer weights 
may be more ​sample efficient​ and hence require fewer samples to train although this is not 
always observed in practice – a phenomenon which is not fully understood (see e.g., ​[57]​). 

State-of-the-art deep neural networks include dozens to hundreds of layers of 
processing (often, they even correspond to ensembles of dozens of networks). As a result, 
these networks contain tens of millions of free parameters. In theory, these algorithms can 
effortlessly ​memorize​ millions of training examples. Even entire datasets as large as some of 
the largest ones currently available such as CIFAR ​[58]​ or ImageNet ​[39]​ could be memorized.  

One measure of a network’s capacity to memorize training samples is called the 
shattering dimension​. The shattering dimension is a measure of the intrinsic degrees of freedom 
of a neural network. The larger the capacity the more training examples will be needed for 
proper generalization from learned to novel data. Initially, the shattering dimension was 
computed for the perceptron by estimating the number of entirely random patterns that can be 
classified correctly. A related measure can be computed for real images by shuffling the class 
labels associated with individual images so as to train the network to learn random associations 
between individual images and category labels. This idea was used by Recht et al ​[59]​ who 
confirmed that modern deep network architectures could achieve near-perfect training accuracy 
using random labels. Such high training accuracy for classifying random labels shows that, in 
principle, neural networks are capable of memorizing millions of individual samples and their 
class labels without necessarily learning any abstract category information. 

With fewer parameters to fit, a recurrent neural network may require fewer samples for 
training ​[60]​ (i.e., lower sample complexity). Indeed, Linsley et al ​[61]​ have shown that it is 
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possible to reduce the sample complexity of a vision system for contour detection by introducing 
recurrent connections in state-of-the-art neural networks.  

Inherent to the discussion about sample complexity and whether neural networks 
memorize all their training data is the distinction between interpolation and extrapolation. This 
dichotomy roughly corresponds to the in- vs. out-of-distribution test sample problem in machine 
learning: the extent to which models can extrapolate to out-of-distribution samples, as opposed 
to only interpolating to novel samples within the same distribution. Cross-validation is a central 
tenet in machine learning that guides model evaluation. Cross-validation dictates the separation 
of training data from test data, but it does not specify how different the training and test data 
need to be. If there is only a single pixel that distinguishes a training image from a test image, 
one could still state that there is cross-validation but the degree of extrapolation is obviously 
minimal.  

Generally, when the test and training data are very similar, an algorithm is tested for its 
ability to ​interpolate​. For example, an algorithm may be trained using images of a chair shown at 
90 degrees in-plane rotation and a chair shown at 0 degrees in-plane rotation. The algorithm is 
afterward tested with an image of the same chair at 45 degrees in-plane rotation. A significantly 
more impressive feat for a learning algorithm would be to be able to identify a completely 
different chair, with a different color and texture, in a completely different background, under 
different illumination conditions, shown from a different 3D angle, etc. Extrapolation refers to the 
ability to make adequate responses with out-of-distribution samples.  

One prominent feature of our own visual system is its ability to extrapolate to unseen 
conditions including views of a novel object not seen during training ​[62]​. Observers are also 
able to readily identify celebrities from photographs that are blurred even up to leaving only 
about a hundred pixels or photographs that have been stretched in unnatural never-seen-before 
conditions ​[63]​. Evidence that these networks do not generalize in such conditions includes the 
work by Geirhos et al ​[64]​ who showed that modern deep neural networks can classify noisy 
images much better than humans, but they cannot generalize to similar albeit different types of 
noise. In a similar vein, Linsley et al have shown that the network architectures that exhibit 
“superhuman” accuracy for the segmentation of neural tissue from serial electron microscopy 
images when trained and tested on different subsets of the same volume do exhibit a large drop 
in accuracy when trained and tested on different volumes ​[65]​. In comparison, they found that 
recurrent neural networks endowed with horizontal and top-down connections can generalize 
much better and use fewer training examples ​[51,61]​.  

 

Solving harder recognition problems with recurrence  
There are many visual recognition problems that seem to require additional processing 

time beyond the mostly feedforward initial wave encompassing ~150 ms described in the 
Introduction. One prominent example is the ability to make inferences from partial information 
during recognition of heavily occluded objects ​[66]​. During natural visual conditions, many 
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objects are partially visible either because they are occluded by other objects in front of them or 
because of poor illumination or because of unusual viewing angles. Despite such challenging 
visual conditions, primate visual recognition is quite robust even when up to 90% of the object is 
occluded, even in the absence of contextual cues, and even when subjects have minimal prior 
experience with the object in question.  

Behavioral, neurophysiological, and computational evidence suggests that purely 
bottom-up computations are generally insufficient to perform pattern completion of heavily 
occluded objects. At the behavioral level, recognition of heavily occluded objects takes longer 
than the recognition of the whole object counterparts. Furthermore, pattern completion 
performance is impaired by the introduction of a backward mask. These reaction time delays 
and sensitivity to masking are indicative of the need for additional computations beyond the 
feedforward sweep. These behavioral measurements are consistent with the latencies reported 
in neurophysiological recordings during pattern completion. The latency of neurophysiological 
signals in areas V4 and inferior temporal (IT) cortex in response to heavily occluded objects is 
delayed by about 50 ms with respect to the responses of the same circuits to the fully visible 
objects ​[67,68]​. These behavioral and neurophysiological observations are further corroborated 
by computational models: state-of-the-art bottom-up models struggle during recognition of 
heavily occluded objects unless they are extensively trained with those specific occluded 
objects ​[69,70]​. 

The inadequacy of purely bottom-up signals for pattern completion suggests that the 
ability to infer the whole from the parts relies on additional horizontal and/or top-down signals. 
Indeed, computational work has shown that the addition of recurrent computations to deep 
convolutional networks can help solve the problem of pattern completion ​[41,71]​. Additionally, 
there is physiological evidence that strongly suggests that top-down signals from prefrontal 
cortex onto ventral visual cortex play an important role during the recognition of occluded 
objects ​[71,72]​. It is also known that familiar object shapes have an influence on image 
segmentation ​[31,73,74]​ and it is possible that the ability to complete patterns and make 
inferences from partial information is enhanced by top-down effects on image segmentation. 

Occlusion is not the only situation in which visual recognition requires additional 
computation. Recognition of objects presented under different viewpoints, at extreme scales, or 
under poor illumination, may require similar computational mechanisms. Consistent with this 
idea, recent work has shown that the extent to which a given image is hard to recognize by 
state-of-the-art computational models is also correlated with increased decoding latencies in 
recordings from the inferior temporal cortex. Similar to the work on object occlusion, 
incorporating horizontal connections to bottom-up models can rescue their performance ​[75]​. 
Recurrent computations are not only relevant for recognition but they can help solve other 
problems as well. We mentioned earlier the challenges in image segmentation in connectomics 
with purely feedforward architectures. Linsley et al have shown that recurrent neural networks 
generalize significantly better to novel volumes without the need to align the various datasets 
[65]​.  
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The role of recurrence beyond recognition 
Visual reasoning  

Visual cognition entails much more than object recognition and categorization. 
Observers perform extensive visual analyses in order to plan for their actions or manipulate 
objects, navigate in their environments, drive, etc. Such visual analyses can be performed 
without explicit object recognition. A non-exhaustive list of such visual reasoning tasks was 
proposed in ​[31]​ by Ullman. For instance, Ullman lists tasks that involve visual judgments as to 
whether a shape lies inside or outside of a closed curve. Such a task appears to require 
sophisticated computations and those computations may be distinct from the ones involved in 
categorization; for example, pigeons show an impressive capacity for shape classification and 
recognition, yet they are essentially unable to perform the inside/outside task in a generalizable 
manner ​[76]​. Another example provided by Ullman involves judging the elongation of ellipse-like 
figures, whether two black dots lie on a common contour or whether one shape can be moved 
to another specified location without colliding with any of the other shapes. Such tasks appear 
artificial but they are reminiscent of the kinds of visual inference that observers need to solve 
when “mak[ing] use of visual aids such as diagrams, charts, sketches, and maps, because they 
draw on the system's natural capacity to manipulate and analyze spatial information, and this 
ability can be used to help our reasoning and decision processes.”  

Some of these tasks were subsequently formalized by Fleuret et al in their Synthetic 
Visual Reasoning Task ​[77]​, a collection of 23 binary classification problems in which opposing 
classes differ based on whether or not images obey an abstract rule. All stimuli depict simple, 
closed, black curves on a white background. There is a total of 1 million samples available for 
training computer vision algorithms for each of the problems. Positive and negative examples 
are shown in ​Fig. 3a​ for 3 representative problems. Most importantly, the shapes used in these 
images are unique without overlap between the training and testing to prevent rote shape 
memorization and force the learning of abstract rules. The challenge broke the state of the art in 
computer vision in 2011 right before the deep learning era. Today, the challenge seems to 
remain significant for modern deep convolutional neural networks as shown by several groups 
[78–80]​.  

In particular, Kim et al ​[80]​ found a clear dichotomy between visual reasoning tasks: 
While spatial relations appeared to be learnable by feedforward neural networks (DCNNs and 
their extensions), same-different relations appear to pose a particular strain on these networks. 
Ultimately, the networks failed to learn same–different visual relations when stimulus variability 
made rote memorization difficult. This result is all the more striking as such similarity judgments 
constitute a major component of IQ tests making them an especially important problem to solve 
for computer vision systems.  
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Interestingly, Kim et al suggested that the ability of modern neural networks to solve 
basic visual reasoning tasks might have been overlooked. They considered a representative 
challenge used in Visual Question Answering known as the CLEVR challenge ​[81]​ (​Fig. 4b​) and 
confirmed that networks appear to learn visual relations when trained and tested on the same 
sets of 3D shapes (i.e., a fixed combination of shapes x color attributes). However, when trained 
on all but one combination of shape x color, the neural networks they evaluated did not appear 
to generalize to the left-out condition – suggesting that they simply memorize the shapes 
presented during training and do not learn the underlying abstract category rule. Furthermore, 
Kim et al showed that learning same – different problems became trivial for a feedforward 
network that is fed with perceptually grouped stimuli.  

This demonstration and the comparative success of biological vision in learning visual 
relations ​[82–85]​ (including insects and even newborn ducklings) suggests that feedback 
mechanisms such as attention, working memory, and perceptual grouping may be the key 
components underlying human-level abstract visual reasoning. There is substantial evidence 
that visual-relation detection in primates depends on recurrent processing that is lacking in 
standard DCNNs. Indeed, converging evidence ​[86–88]​ suggests that the processing of spatial 
relations between pairs of objects in a cluttered scene requires attention, even when individual 
objects can be detected pre-attentively (but see also ​[89]​).  Another brain mechanism implicated 
in our ability to process visual relations is working memory ​[90–92]​. In particular, imaging 
studies ​[90,91]​ have highlighted the role of working memory in prefrontal and premotor cortices 
when participants solve Raven's progressive matrices which require both spatial and 
same-different reasoning. 

What is the computational role of attention and working memory in the detection of visual 
relations? One assumption ​[88]​ is that these two mechanisms allow flexible representations of 
relations to be constructed ​dynamically​ at run-time via a sequence of attention shifts rather than 
statically​ by storing visual-relation templates in synaptic weights (as done in feedforward neural 
networks).  Such representations built “on-the-fly” circumvent the combinatorial explosion 
associated with the storage of templates for all possible relations and objects ​[93]​, helping to 
prevent the capacity overload that plagues DCNNs and other feedforward neural networks.  

 

Attention and search  
Much of the recent progress in image categorization has been driven by the inclusion of 

trainable attention modules in state-of-the-art DCNN architectures. While biology is sometimes 
mentioned as a source of inspiration ​[94–100]​, the attentional mechanisms that have been 
considered remain quite limited in comparison to the rich and diverse array of processes used 
by the human visual system (see ​[101]​ for a review).  

One of the prominent types of tasks to study the role of top-down attention in cortical 
processing is visual search ​[102]​. In a typical scenario, a target object is presented (e.g., 
Waldo), followed by a search image, and the subject has to freely move the eyes to locate the 
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target. In this type of task, the subject needs to maintain a representation of the target object 
features in working memory and use knowledge about those features in a top-down fashion to 
guide active sampling of the image via eye movements.  

Recent neurophysiological work has started to provide insights into the neural circuitry 
involved in visual search ​[103,104]​. Bichot and colleagues trained monkeys to perform a visual 
search task while recording activity from prefrontal cortex (PFC) and the frontal eye fields (FEF). 
They found that neurons in PFC show a visually selective response upon presentation of the 
target cue, maintain that information during the delay period and convey that information to the 
FEF to direct the next saccade. Furthermore, inactivation of the specific subregions within 
frontal cortex involved in visual search led to a significant impairment in the monkey’s ability to 
efficiently find the target ​[103]​. The selective attention signals from PFC are fed back to 
modulate the responses along the ventral visual stream (reviewed in ​[104]​). There is a reverse 
hierarchy in the magnitude of such attentional effects, which are more prominent in higher visual 
areas and manifest themselves in a clear but largely reduced fashion in early visual areas.  

Several computational models have been proposed recently to capture how top-down 
signals modulate processing of an image and guide eye movements during visual search. 
Inspired by the neurophysiology of visual search, Zhang and colleagues built a simple 
architecture consisting of a DCNN, which aims to mimic the extraction of features along ventral 
visual cortex, and a prefrontal cortex-like module that stores information about the sought target 
and provides top-down feature-based attentional modulation onto visual cortex ​[105]​. Combining 
the bottom-up features with top-down target modulation led to the creation of an attention map 
that dictates the location of the next saccade in a winner-take-all fashion. The model was able to 
provide a reasonable approximation to both the number and the spatiotemporal sequence of 
eye movements that humans executed during visual search tasks spanning a wide range of 
difficulty levels. Both humans and the model were able to locate targets despite large 
transformations in the target features (i.e., invariantly to object changes) and despite having had 
no prior experience with the target objects (i.e., in a zero-shot fashion).  

Related recent work by Adeli & Zelinsky provided a biologically-inspired implementation 
of biased competition theory whereby the multiple objects in a display compete with each other 
for attention and a top-down signal is used to disambiguate and bias this competition in favor of 
the sought target ​[106]​. Such feature-based modulation is more efficient when applied at later 
stages of the visual hierarchy ​[105,107]​, which is consistent with physiological observations 
showing that both spatial and feature-based attention is considerably weaker in early visual 
cortical areas compared to higher visual cortical areas.  

It is instructive to compare these recent advances in modeling visual search with parallel 
approaches in the computer vision literature. Unlike in the image categorization tasks described 
earlier, where entire images are associated with a single class label, object localization tasks 
may require the detection of one or multiple objects and the ability to draw a bounding box 
around them. Region-based approaches are popular DCNN extensions that achieve 
state-of-the-art results for object detection and localization. The basic idea behind region-based 
approaches is to first run a generic object detector over the image, as in the R-CNN ​[108]​, to 
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bring down the number of windows to be classified (called the region proposals) to a reasonable 
number (from millions for a system scanning the image across all positions and scales to a few 
thousands). These windows are then classified by a DCNN to yield a class label for each 
bounding box (including an option to reject the bounding box as containing none of the objects 
of interest). The approach was improved in a series of papers from the Fast R-CNN ​[109]​ to the 
Faster R-CNN ​[110]​ and the region-based fully convolutional networks (R-FCN) ​[111]​ by sharing 
convolutional layers between the region proposal stage and the detection and localization 
stages—thus allowing the training of a single efficient DCNN for the entire system. Another 
notable architecture is YOLO ​[112]​, which can run with near state-of-the-art accuracy but in 
real-time for typical image resolutions used in computer vision datasets.  

It is worth noting that modern architectures for object localization are not concerned with 
biological plausibility or computational efficiency. Despite all the aforementioned improvements, 
searching for a target object in the large image displays would require a very large amount of 
computational resources. This cost is arguably an evolutionary force behind the biological 
machinery used to implement eye movements and eccentricity-dependent sampling as done in 
[106]​. Consistent with this idea, Eckstein et al ​[113]​ have shown that, unlike current 
architectures for object localization which scan for objects exhaustively across scales, human 
search is largely guided by context. As a result, human observers, unlike computer vision 
systems, will often miss targets when their size is inconsistent with the rest of the scene (even 
when targets are made larger and more salient and observers fixated the target). 

Another remarkable distinction between computer vision object detection algorithms and 
biologically-inspired models is that the former requires extensive training with the sought 
targets. A state-of-the-art algorithm for object detection such as YOLO can only look for the 
types of objects that it was trained on. Nothing more, nothing less. In stark contrast, Zhang et al 
show that their model can rapidly find target objects after a single exposure to them ​[105]​.  

Nonetheless, it has been shown that, while the visual representations learned by DCNNs 
without attention bear little overlap with those used by human observers for visual recognition 
[114]​, attention mechanisms help DCNNs learn visual representations that are more similar to 
those used by human observers ​[115]​. In particular, Linsley et al have​ shown that it is possible 
to leverage crowd-sourcing methods to identify image features that are diagnostic for human 
recognition and to leverage that knowledge to cue DCNNs to attend to these regions during 
training for image categorization. As a result, DCNNs learn visual representations that are 
significantly more similar to those used by human observers in addition to DCNNs that 
generalize better to novel images (​Fig. 5​).  

 

Learning and plasticity  
At the core of modern deep learning is the need to adjust the large number of tunable 

weight parameters present in the network. For the most part, successes in vision have relied on 
supervised learning approaches whereby weights are adjusted via the presentation of labeled 

13 

https://paperpile.com/c/KYjl2n/2nfC
https://paperpile.com/c/KYjl2n/Qhhf
https://paperpile.com/c/KYjl2n/zP9Z
https://paperpile.com/c/KYjl2n/fIfs
https://paperpile.com/c/KYjl2n/6Kxd
https://paperpile.com/c/KYjl2n/iz7k
https://paperpile.com/c/KYjl2n/cO4x
https://paperpile.com/c/KYjl2n/MH8W
https://paperpile.com/c/KYjl2n/PJgP


 

examples so as to minimize the classification error on the training data. One of the most widely 
used algorithms for this type of training is back-propagation ​[116]​. There has been a lot of 
discussion in the field about the biological plausibility of such back-propagation algorithms ​[117]​, 
[118]​. There has been a recent spur of interest in the design of more biologically-plausible 
learning algorithms for training neural networks.  

An important criticism of the backpropagation algorithm has been the need for 
“symmetric” connectivity with feedback connections matching the weights of their corresponding 
feedforward counterparts (the weight transport problem). While the extent of such symmetry – or 
lack thereof – in cortical networks remains to be quantified, algorithms have been described that 
provide simple and biologically-plausible learning mechanisms for feedback synaptic weights to 
adapt so as to match feedforward ones ​[119]​. Moreover, recent work has demonstrated that it 
may even be possible to perform adequate learning via back-propagation using random 
feedback weights ​[120]​ – at least via matching of the feedback and feedforward synaptic signs 
without necessarily equating their magnitudes ​[121]​. Another important limitation concerns the 
mechanisms of credit assignment during learning including the propagation of gradients, the 
timing of credit allocations, and even the mere origin of such credit signals. Here again, there 
has been significant progress towards algorithms that can assign and propagate credits in more 
biologically palatable forms ​[118,122]​,​[123]​. 

Another widely successful approach to tuning weights is via reinforcement learning ​[124]​. 
Reinforcement learning algorithms have demonstrated seemingly magical performance in tasks 
such as learning how to play games like Chess, Go or different types of video games, even 
beating world champions ​[125]​. One can only dream about the potential of reinforcement 
learning approaches to learning vision, but there has not been much progress on their 
implementation yet. Initial work has already demonstrated the benefits of combining 
reinforcement learning with RNNs to play Atari games ​[126]​. Promising results have also been 
obtained for visual tracking ​[127,128]​, face recognition ​[129]​, action recognition ​[130,131]​, video 
captioning ​[132]​, color enhancement ​[133]​ and object detection ​[134,135]​.  

Another approach to learning structure in the visual world which does not use explicit 
labeled examples or a teacher that provides direct rewards/punishment for specific actions is 
based on the intuition that predicting what will happen next may be an important principle of 
computation in the brain. This idea was elegantly introduced in Neuroscience by Rao and 
Ballard’s with their predictive coding algorithm ​[136,137]​. Predictive coding algorithms have 
recently re-gained momentum in the context of deep network architectures ​[138–141]​. Common 
to many of these models is the notion that feedback signals provide a prediction of what will 
transpire next while the feedforward signals convey an error, or difference, between those 
predictions and the incoming inputs.  

Predictive signals carried by top-down connections can provide a powerful and highly 
efficient mechanism to learn structure in the world because they do not require the type of 
expensive and abundant guidance from a teacher as in traditional supervised learning methods. 
In fact, many of these predictive algorithms have been trained using unlabeled videos, of which 
there is no shortage of for the computer science community, and it is particularly easy to 
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conceive that infants also have almost unlimited access to this type of input during 
development. In the computer science literature, using prediction as a learning signal in video 
sequences is generally grouped under the term self-supervised learning, and there is intense 
work in trying to use this type of approach to pre-train networks in order to drastically reduce the 
number of examples required in subsequent supervised learning steps ​[142]​. It is particularly 
intriguing that predictive networks trained with random natural videos (e.g., videos of cars 
navigating in a city), can automatically develop units that resemble fundamental properties of 
cortical computation and perception ​[143]​.  

 

From recognition to synthesis 
Much of this review has focused on the dominant paradigm in perception, the so-called              

discriminative approach to vision which casts visual tasks as a classification problem. The             
alternative, the so-called ​generative approach, which can be traced all the way back to              
Helmholtz’s description of vision as an inverse inference problem is now quickly regaining             
momentum. This takes on many different incarnations such as ​analysis by synthesis and             
inverse graphics ​[144–149]​. In this framework, the goal for the visual system is to literally invert                
the generative process which led to the creation of retinal images in order to recover               
descriptions of all the objects in a scene and their spatial layout as well as estimates of the                  
factors responsible for the generation process beyond image class labels (including shape,            
appearance, and pose). While these ideas have so far received little direct neuroscience             
support, our brains exhibit a clear ability to generate mental images and the successes of               
inverse graphics approaches in computer vision have prompted claims that visual recognition is             
accompanied by the ability to draw or generate images ​[150]​. Whether such an ability reflects               
key computations involved in visual recognition or simply a by-product of these computations             
remains a matter of debate ​[151,152]​.  

Taken to the extreme, inverse graphics approaches seem inconsistent with          
neurophysiology. A very basic problem is that there are simply no feedback connections that              
project back to the retina so there is no physical mechanism by which feedback can generate                
images with resolutions that match that of the retina. However, there could be coarser              
implementations through feedback projections to cortical areas as suggested by vision theories            
where V1 acts as a visual buffer ​[147,153]​. Close your eyes and consider the following question:                
how many doors are there in your house? To solve this question, subjects report “mentally               
navigating” through a coarse rendering of their houses. This mental representation lacks the             
type of details invoked by inverse graphics approaches but still contains some notion of              
generating an internal image via feedback signals which could not be accounted for by purely               
bottom-up or even horizontal neural interactions.  

A recent highly successful approach in image generation is the introduction of generative             
adversarial networks (GANs), which consist of two modules: a generator that synthesizes            
images and a discriminator that tries to discriminate between real and artificial images. By jointly               
training the two adversary networks, the discriminator becomes increasingly better at detecting            
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“fakes” while the generator improves its forging ability to keep fooling the discriminator. This              
leads to highly realistic images that can even fool human observers ​[154,155]​. It is hard to                
conceive how a literal implementation of generator and discriminator network circuits could be             
instantiated in brains.  

Another approach related to inverse graphics which has received a lot of attention within 
the computer vision community is the capsule networks ​[156–158]​ which are extensions of 
CNNs to enable to explicitly represent structural information. The main idea, which is decades 
old and can be traced back to Biederman’s geons ​[159,160]​, is to represent different objects 
with the same set of basic parts and their relations.  In a capsule network, neural “chains” 
encode object parts and their structural relations through binary links in a way which is 
independent of the neural interconnections (or synaptic weights). Unlike CNNs where pose 
information is discarded through (max) pooling operations to build invariant representations and 
only the presence of features is represented through a single scalar value (the unit activity), 
capsules “encapsulate” more sophisticated representations related to an object viewpoint (the 
actual instantiation parameters) in vector form.  

Capsules aim to encode both the probability of an object (or object part) at a given 
location (as the length of a vector-valued unit) and (as the direction of that vector). Possible 
object transformations are stored in synaptic weights in a pose matrix and by multiplying the 
vector output of capsules with this pose matrix, one can encode very rich pose information, e.g, 
related to the position of an object given the detection of local parts. The weights of these 
matrices are derived from a dynamic routing algorithm whereby the ability of a lower level 
capsule to send its input to a higher level capsule is governed by the consistency between the 
top-level capsule and the low-level prediction. Such routing by agreement allows recovering 
what parts belong to an object by simply tracing the path of the activations along the hierarchy. 
So far, initial results were obtained with capsules on toy datasets ​[156–158,161]​ but more 
recent work has shown their potential for image classification on a subset of ImageNet ​[162]​ and 
action recognition datasets ​[163]​.  

There is currently very limited neuroscience evidence for such activity-independent 
labeling of visual elements that are behaviorally relevant. Indeed, prior neurophysiology work 
points to enhanced neuronal activity through recurrent grouping mechanisms with some delay 
after the initial transient response ​[164–166]​. One promising neural mechanism which could 
achieve the types of dynamic routing needed in capsule networks is synchronous oscillations 
(e.g., ​[167–171]​) though these theories are also contested (e.g., ​[172,173]​). Because the degree 
of synchrony of neuronal spikes affects the output of downstream neurons, synchrony has been 
postulated to allow for gating of information transmission between neurons or whole cortical 
areas ​[170,174]​. Moreover, the relative timing of neuronal spikes may carry information about 
the sensory input and the dynamic network state (e.g.,​[171,175]​), beyond or in addition to what 
is conveyed by firing rates.  

As a proof of concept, Reichert & Serre have shown how aspects of spike timing, long 
hypothesized to play a crucial role in cortical information processing, could be incorporated into 
deep networks to build richer, more versatile representations ​[176]​ . They introduced a neural 
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network formulation of synchrony using the framework of complex numbers and complex-valued 
neural units. In this framework, units are attributed both a firing rate and a phase, the latter 
indicating properties of spike timing with respect to some (unspecified) neural oscillations. They 
showed how this formulation qualitatively captures several aspects thought to be related to 
neuronal synchrony, including gating of information processing and dynamic binding of 
distributed object representations. Complex valued-neural networks offer a demonstration that it 
is at least possible in an architecture that involves bottom-up and top-down inference as in Deep 
Boltzmann Machines to bind together features that belong to the same objects ​[176]​.  

 

Concluding remarks and future directions 
A fundamental area of investigation that remains rather enigmatic is how to connect our 

understanding of visual computations along the ventral visual cortex to high-level cognition. For 
example, while examining a scene depicting kids playing in the playground, we can interpret the 
location, the actions, what is behind what, how different people interact with each other, we 
understand what those strange structures in the playground are – even if they may be heavily 
occluded and even if we have never seen them before, we can easily infer why the swing is in a 
given position, we can guess a kid’s intentions by following their gaze, we can predict the 
trajectory of a ball even from a static snapshot, and we can generally answer an infinite number 
of questions about the scene in a flexible manner. This type of general knowledge about the 
world can be vaguely grouped in the term “common sense”, the myriad of facts and knowledge 
that humans have about their environment. How this information is stored in the brain, and the 
mechanisms by which it provides top-down modulation of processing on visual cortex remains 
as enigmatic as ever and will probably constitute an area of active research in the upcoming 
years. 

Perhaps one of the paradigmatic examples of exciting progress which at the same time 
illustrates how far we still have to go is the problem of image captioning. Consider the example 
image in ​Fig. 1A​, which we uploaded to one of the state-of-the-art systems for image captioning 
(Microsoft Caption Bot). The system correctly determined that there is a group of people. 
Captioning systems tend to be pretty good at detecting people, in part because it is likely that a 
large fraction of the training data contain people. The system astutely infers that the people are 
standing, not a trivial feat. Perhaps there are lots of features that show that the picture is 
outdoors and there is an imperfect but strong correlation between outdoor pictures and people 
standing. Furthermore, the system correctly recognizes the leaning Tower of Pisa. There is 
probably an enormous corpus of photographs with “Tower of Pisa” labels for training and the 
vast majority of those pictures are probably circumscribed to a relatively small number of 
well-described angles, sizes, colors, etc. It is perhaps possible but not very common to find an 
image of the Tower of Pisa upside down, with each level painted in a different color and with a 
black background instead of the blue sky (a quick search in google images yields images with 
some, but not all, of those features). Recognizing major landmarks from conventional angles is 
probably a relatively easy task. The system not only achieves all of these recognition feats, but 
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it also produces a grammatically correct sentence. All of these are quite remarkable 
achievements that go well beyond where image captioning was a decade ago.  

Yet, that is as far as the algorithms go. Consider the example in ​Fig. 1B​. Here again, the 
algorithm correctly infers that there is a person, detects the Tower of Pisa and even conjectures, 
probably correctly, that the person is standing. But the algorithm misses some of the essential 
aspects of the image. It fails to detect the ice cream cone, the hand holding the cone and other 
background elements. The system fails to notice that the cone is particularly well aligned with 
the base of the Tower of Pisa, nor does it appreciate that the Tower of Pisa appears to be the 
ice cream. And the system does not understand that the girl is holding the cone and sticking her 
tongue to lick the ice cream. Frustratingly, scrambling the image yields a similar caption (​Fig. 
1C​), even though the scrambled version lacks the critical gist of what is happening in the image. 
In this case, the algorithm was not even able to detect the scrambled Tower of Pisa. The 
captions for ​Fig. 1A​ and ​Fig. 1B​ are very similar, despite the fact that those images evoke 
rather different reactions in human observers. This example illustrates some of the fundamental 
challenges ahead to bring in feedback signals that can incorporate our common sense 
knowledge about the world in the interpretation of a visual scene.  

Heroic studies of the initial wave of processing in the visual cortex have led to successful 
computational-neuroscience models and breakthrough technologies with real-world 
applications. Here we have argued that the next generation of computational models will focus 
on the second wave of processing incorporating feedback loops. Modeling short-range 
interactions within visual cortex and long-range interactions between frontal areas and visual 
cortex, promises an even wider and more radical transformation whereby common sense 
knowledge, prior experience, language, and symbolic reasoning can be systematically and 
rigorously integrated with incoming visual signals to create richer models that are capable of 
general intelligence in more complex and generalizable tasks.  

Humans can effortlessly construct an unbounded set of structured descriptions about 
their visual world ​[29]​. Mechanisms in the visual system such as perceptual grouping, attention, 
and working memory exemplify how the brain learns and handles combinatorial structures in the 
visual environment with a small amount of experience ​[177]​. However, exactly how attentional 
and mnemonic mechanisms interact with hierarchical feature representations in the visual cortex 
is not well understood. Given the vast superiority of humans over modern computers in their 
ability to solve seemingly simple visual reasoning tasks, we see the exploration of these cortical 
mechanisms as a crucial step in our computational understanding of visual reasoning.  

  

18 

https://paperpile.com/c/KYjl2n/1EA6
https://paperpile.com/c/KYjl2n/S1cI


 

 

Figures and figure legends 
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Figure 1. 
Current image 
captioning 
efforts illustrate 
exciting 
progress and 
how far we still 
need to go. 
(A-C) ​Example 
of how an image 
captioning 
system 
(Microsoft 
Cognitive 
Services) 
describes three 
pictures, using 
the Microsoft 
Caption Bot 

system (​https://www.captionbot.ai/​). ​(D-I) ​Captions automatically generated by @picdescbot, a 
bot that describes random pictures from Wikimedia commons also using Microsoft Cognitive 
Services (​https://picdescbot.tumblr.com/about​). Images posted on July 8, 2019, with the 
following captions (​D-F​): a group of people riding horses on a city street, a large body of water 
with a city in the background, a small clock tower in front of a house. Images posted on July 7, 
2019, with the following captions (​G-I​): a cat lying on top of a mountain, a view of a city at night, 
a bird flying over a body of water.  
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 Figure 2. Recurrent networks show 
greater parameter efficiency and 
computational flexibility​. ​A. ​Schematic 
illustration of a 3-layer network showing 
bottom-up connections (red), horizontal 
recurrent connections (blue), and top-down 
connections (green). The top layer sends 
signals to a decision mechanism that 
evaluates how confident the network is 
about the solution and decides whether to 
emit a response or send top-down signals 
that interact with the horizontal recurrent 
computations to enhance the solution. ​B​. 
Schematic illustration of an 11-layer 
network where each of the horizontal 
computations in part ​A ​is unfolded to 
generate 4 steps of feedforward operations 
with weight sharing. ​C-D​. The network in ​C 
can be flexibly utilized in a rapid bottom-up 
mode (​C​) or in a slow(er) recurrent mode 
(​D​). 
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Figure 3. Recurrent networks help visual recognition​. ​A-B​. Recognition performance in a 
5-way categorization task of partially visible objects for humans (black), layer fc7 in Alexnet 
(red), Alexnet network embedded with attractor-like horizontal recurrent connectivity in the fc7 
layer without any training with occluded objects (blue) or with training (orange). Example objects 
from limited visibility to full visibility are shown in part ​B​. Chance performance = 20% (dashed 
line). Modified from ​[41]​. ​C​. The fraction of neural response variance explained for neurons in 
macaque inferior temporal cortex. For images that are difficult to recognize in a rapid 
feedforward mode, adding more layers to a feedforward network can improve neural variance 
explained (deeper feedforward networks), but the same effect can be achieved by multiple 
passes through a shallower network with horizontal recurrent connections (deep recurrent). 
Modified from ​[75]​.  
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Figure 4.​ ​Sample visual reasoning tasks.​ a) Synthetic visual reasoning test ​[77]​. Six 
examples where the task is to decide whether a small shape is inside or outside a larger one. b) 
Visual question answering on the CLEVR challenge ​[81]​ to test aspects of visual reasoning such 
as attribute identification, counting, comparison, multiple attention, and logical operations. c) 
The pathfinder challenge where the task is to evaluate where the two larger white dots are 
connected or not ​[50]​. d) Sample questions and answers with corresponding images from the 
Visual Question Answering (VQA) challenge ​[178]​. 
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 Figure 5. Learning what and where to attend. ​The top row depicts representative images 
from the Microsoft COCO dataset depicting object categories also present in ILSVRC12 (which 
was used for training the system). In the middle row, each of these images is shown with the 
transparency set to the attention map it yielded in the attention network by Linsley et al 
[179]​trained with human supervision (see text for details). Visible features were attended to by 
the model, and transparent features were ignored. Animal parts like faces and tails are typically 
emphasized, whereas vehicle parts like windows and windshields are not. Co-training the 
attention network with human supervision yields better classification accuracy on ImageNet as 
well as learned feature representations that are more human-like. The system also generalizes 
from the ImageNet to the Microsoft COCO dataset (shown here) despite significant changes in 
the objects’ scale. The bottom row shows the same visualization using attention maps from the 
same architecture trained without human supervision, which has distributed and less 
interpretable attention. Image credit: Drew Linsley. Adapted with permission. 
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